Semiautomatic Labelling of Semantic Features
نویسندگان
چکیده
This paper presents the strategy and design of a highly efficient semiautomatic method for labelling the semantic features of common nouns, using semantic relationships between words, and based on the information extracted from an electronic monolingual dictionary. The method, that uses genus data, specific relators and synonymy information, obtains an accuracy of over 99% and a scope of 68,2% with regard to all the common nouns contained in a real corpus of over 1 million words, after the manual labelling of only 100 nouns.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملAutomation and Validation of Annotation for Hindi Anaphora Resolution
The process of labelling any language genre by which one can extract useful information is called annotation. This provides syntactic information about a word or a word phrase. In this paper, an effort has been made to provide the algorithm for semiautomatic annotation for Hindi text to cater anaphora resolution only. The study was conducted on twelve files of Ranchi Express available in EMILLE...
متن کاملSemantic Role Labelling without Deep Syntactic Parsing
This article proposes a method of Semantic Role Labelling for languages with no reliable deep syntactic parser and with limited corpora annotated with semantic roles. Reasonable results may be achieved with the help of shallow parsing, provided that features used for training such shallow parsers include both lexical semantic information (here: hypernymy) and syntactic information.
متن کاملClassifying Temporal Relations with Simple Features
Approaching temporal link labelling as a classification task has already been explored in several works. However, choosing the right feature vectors to build the classification model is still an open issue, especially for event-event classification, whose accuracy is still under 50%. We find that using a simple feature set results in a better performance than using more sophisticated features b...
متن کاملEdit Tree Distance Alignments for Semantic Role Labelling
―Tree SRL system‖ is a Semantic Role Labelling supervised system based on a tree-distance algorithm and a simple k-NN implementation. The novelty of the system lies in comparing the sentences as tree structures with multiple relations instead of extracting vectors of features for each relation and classifying them. The system was tested with the English CoNLL-2009 shared task data set where 79%...
متن کامل